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Efficient preparation of 4-methoxy-5,6-dihydro-2H-pyran
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Abstract

We report the efficient synthesis of 4-methoxy-5,6-dihydro-2H-pyran (MDHP) via the TiCl4 driven elimination of MeOH from
4,4-dimethoxytetrahydropyran. The previous difficulty of preparing MDHP restricted the wider use of 4-methoxytetrahydropyran-4-yl
(MTHP) acyclic acetals, which have desirable protecting group properties when compared to more commonly used MOM- and THP-
acetals. The behaviour of the elimination on related acetals is also examined.
� 2008 Elsevier Ltd. All rights reserved.
The protection of hydroxyl groups during the synthesis
of poly-oxygenated natural products is a ubiquitous syn-
thetic process.1 Acetals are one of the most common classes
of –OH protective groups, especially for poly-ols where
pairs of adjacent hydroxyls can be masked simultaneously
as a cyclic acetal, for example, acetonide or benzylidene
derivatives. However, there is a limited choice of reagents
for the protection of isolated hydroxyls as acetals. This is
because the corresponding acyclic acetals of simple car-
bonyl compounds, such as acetone and benzaldehyde, lack
the entropic stabilisation of a ring.

The most prominent acyclic acetal protective groups are
tetrahydropyran-2-yl (THP) and methoxymethyl (MOM)
derivatives. The former, prepared by treating an alcohol
with readily available 2,3-dihydro-4H-pyran in the pres-
ence of catalytic acid, have a convenient range of stability
for many synthetic purposes, but contain a new stereogenic
centre leading to the formation of diastereomers when pro-
tecting chiral substrates. The latter, prepared by the reac-
tion of an alcohol with MOM–Cl under basic conditions,
require relatively strongly acidic conditions to deprotect
(due to the lack of alkyl groups to stabilise the intermediate
cation), and MOM–Cl has a limited shelf-life.
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4-Methoxytetrahydropyran-4-yl (MTHP) acetals have
the synthetic advantages of both THP and MOM deriva-
tives, in so far as they have a similar range of stability to
THP acetals but, like MOM acetals, generate no new stereo-
genic centres.1 MTHP-acetals are easily formed by the
acid catalysed addition of an alcohol to 4-methoxy-5,6-
dihydro-2H-pyran (MDHP, 1a, Scheme 1). MDHP has
itself been synthesised by the Brønsted acid catalysed extru-
sion of methanol from 4,4-dimethoxytetrahydropyran (2a),
a compound that we have found is easily prepared on
>100 g scale.2 However, MTHP protection has not been
widely used outside nucleotide chemistry, probably because
the requisite MDHP is very expensive (Aldrich Chemical
Co., £61.00 for 1 g, 95% purity). This may reflect the poor
Scheme 1. Protection of hydroxyl groups as MTHP-acetals.
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Scheme 2. TiCl4 mediated elimination of acetals.
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yield in the elimination of methanol from 4,4-dimethyl
acetal 2a and difficult purification of MDHP (1a) for which
no improvement in the procedure has been reported for 32
years. We have repeated this procedure many times: typi-
cally in our hands, after quenching the acid catalyst, enol
ether 1a is distilled from the reaction mixture in a yield
of around 55–60%. However, the MDHP is contaminated
by acetal 2a and tetrahydropyran-4-one (3), which are very
difficult to separate due to the similarity of the boiling
points of all three compounds (1a 60–62 �C/15 mmHg; 2a

61–63 �C/11 mmHg; 3 58 �C/12 mmHg). Furthermore,
only about 75% of the starting acetal 2a is returned from
the extrusion as a distillable fraction, the remainder being
a thick, presumably oligomeric, involatile residue.

Masking the axial 2-O of myo-inositol as its MTHP-ace-
tal 4 has been reported3 to provide a useful building block
for phosphoinositide synthesis. We sought to repeat this
protection of the axial 2-hydroxyl as part of our continued
efforts in this field. However, the reaction did not proceed
very far, except when using MDHP fractions having mini-
mal contamination by acetal 2a and ketone 5. For this rea-
son, we required a new method for preparing MDHP free
of contamination.

Apart from Brønsted acids, various Lewis acids have
also been reported to mediate extrusion of methanol from
dimethyl acetals to give the corresponding methyl enol
ethers.4a–d These conditions were tested on dimethyl acetal
2a (1 g scale) where the reactions were followed by TLC
and the crude product mixture was analysed by 1H NMR.

Boron trifluoride–diethyl ether complex has been used
to eliminate cleanly the related dimethyl acetals of N-aryl
piperidin-4-ones.4a Under these conditions [0 �C with a
slight excess of N,N-diisopropylethylamine (DIPEA) in
CH2Cl2] there was no reaction of 2a with stoichiometric
Lewis acid. However, on doubling the reagent equivalents,
although enol ether 1a started to form, significant ketone 5

(as well as starting acetal 2a) was observed by TLC, and
with time the reaction darkened—the latter is assumed to
be related to decomposition. As our aim was to find a
high-yielding route to MDHP (1a), darkening and the
appearance of ketone 5 were taken as the signature of
failure.

Although trimethylsilyl trifluoromethanesulfonate
(TMSOTf) has been reported to be a general reagent for
eliminating dimethyl and cyclic acetals,4b a similar result
to that with Et2O�BF3 was obtained with this reagent.
There was no reaction, even at reflux, between dimethyl
acetal 2a and stoichiometric TMSOTf, in CH2Cl2 or
MeCN, with a slight excess of DIPEA. However, doubling
the amount of reagents led to rapid darkening and produc-
tion of ketone 5. Rapid decomposition was also observed
using 2 equiv of aluminium trichloride and excess triethyl-
amine in diethyl ether at 0 �C, conditions which have been
reported to cleanly eliminate dimethyl acetals of N-sulfonyl
piperidinones.4c

Having found with the above Lewis acids that >1 equiv
of reagent was required to initiate significant methanol
elimination from 2a, but that this led to concomitant
byproduct formation, we then explored whether 4-halo-4-
methoxytetrahydropyrans could be eliminated under basic
conditions. Despite possible stabilisation of such com-
pounds by the electron withdrawing oxygen of the pyran
ring, none have been reported. However, it was noted that
the related 4-cyano-4-methoxytetrahydropyran (6) could
be prepared in moderate yield by trapping the oxycarbeni-
um cation 5 generated at low temperature from the reac-
tion of dimethyl acetal 2a and stoichiometric titanium
tetrachloride with tert-butyl isocyanide5 (Scheme 2).

We reasoned that the addition of a weak base to the ini-
tial mixture of 4,4-dimethoxytetrahydropyran (2a) and
TiCl4 should favour an E1 mechanism to provide the
desired MDHP (1a) in a yield at least similar to 6. Indeed,
after the treatment of 2a with TiCl4 at �78 �C, the addi-
tion of DIPEA or pyridine, followed by aqueous work-
up, gave mainly the desired enol ether 1a. However, this
was contaminated by ketone 5, the product of hydro-
lysis, which we suspected had been generated during the
aqueous work-up as a result of incomplete quenching of
acid.

Using a fivefold excess of pyridine to initiate the elimina-
tion various anhydrous quenches for the TiCl4 were tested:
the addition of tert-BuOH, solid sodium hydrogen carbon-
ate, or solid sodium carbonate to the reaction still led to the
formation of tetrahydropyranone 3 after aqueous work-up.
However, excess pyridine followed by solid potassium
hydroxide gave exclusively the desired MDHP enol ether
1a. Notably, if the pyridine was omitted and only solid
KOH was added after the TiCl4 then rapid degradation
occurred with no identifiable products. On a 50 g scale
using this quenching procedure an 86% yield of MDHP
(1a) was achieved after distillation having almost no detect-
able contamination by either acetal 2a or ketone 3.6 When
the MDHP enol ether 1a from this procedure was used to
prepare 2-O-MTHP myo-inositol 4 from the corresponding
alcohol, the reaction was faster (overnight vs 2 days) and
required less reagent (5 vs 10 equiv) to reach completion
compared to the published procedure.3

To explore the scope of the reaction of tetrahydropyran-
4-yl acetals with TiCl4, the elimination conditions were
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tested on some other 4,4-dialkyloxy acetals (2b–e). 4-n-
Butyloxy- and 4-allyloxy-4-methoxytetrahydropyrans (2b

and 2c, respectively) were prepared by reaction of MDHP
(1a) with an excess of each of the corresponding alcohols in
the presence of catalytic triphenylphosphonium hydro-
bromide.7 We found that diallyl acetal 2d was cleanly
prepared from triallyl orthoformate generated in situ and
ketone 5 in the presence of catalytic para-toluenesulfonic
acid. However, the reported8 conversion of ketones to dial-
lyl acetals with trimethylsilyl allyl ether and catalytic
TMSOTf failed. Dibutyl acetal 2e was separated chromato-
graphically from the preparation of 2b.

Treatment of diallyl acetal 2d with TiCl4 at both �78
and �60 �C, followed by pyridine, failed to give any reac-
tion. When the reaction was allowed to warm to �40 �C
before the pyridine was added decomposition occurred
with no identifiable products being isolated. In contrast,
when dibutyl acetal 2d was treated similarly with TiCl4 at
�40 �C, 1H NMR of the crude showed the desired butyl
enol ether 1b in the presence of the starting acetal 2d in a
ratio of ca. 4:1. The need for a significant rise in tempera-
ture before elimination occurred, led us to consider the
possibility that steric hindrance might permit selective
elimination of mixed acetals to occur. However, when the
mixed 4-methyl-4-butyl acetal 2b was treated with TiCl4
at �60 �C, 1H NMR of the crude product showed no sig-
nificant selectivity. Notably, applying the same procedure
to allylmethoxy acetal 2c, again with elimination at
�40 �C, did give some allyl enol ether 1c selectively
(1c:1a was ca. 9:1).

In summary, we have developed a clean and efficient
synthesis of the reagent MDHP (1a), which had previously
been difficult to prepare and prohibitively expensive to use
on a large scale. This allows ready protection of isolated
hydroxyl groups as their MTHP-acetals which have a
similar stability to, but do not introduce the undesirable
stereogenic centre of, popular THP-ethers.
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